164

Advanced Digital Systems

Managing parallel execution units in a superscalar microprocessor is a complex task, because the
microprocessor wants to execute instructions as fast as they can be fetched—yet it must do so in a
manner consistent with the instructions’ serial interdependencies. These dependencies can become
more complicated to resolve when superscalar and superpipelining techniques are combined to cre-
ate a microprocessor with multiple execution units, each of which is implemented with a deep pipe-
line. In such chips, the instruction decode logic handles the complex task of examining the pipelines
of the execution units to determine when the next instruction is free of dependencies, allowing it to
begin execution.

Related to superpipelining and superscalar methods are the techniques of branch prediction, specu-
lative execution, and instruction reordering. Deep pipelines are subject to performance-degrading
flushes each time a branch instruction comes along. To reduce the frequency of pipeline flushes due to
branch instructions, some microprocessors incorporate branch prediction logic that attempts to make a
preliminary guess as to whether the branch will be taken. These guesses are made based on the history
of previous branches. The exact algorithms that perform branch prediction vary by implementation
and are not always disclosed by the manufacturer, to protect their trade secrets. When the branch pre-
diction logic makes its guess, the instruction fetch and decode logic can speculatively execute the in-
struction stream that corresponds to the predicted branch result. If the prediction logic is correct, a
costly pipeline flush is avoided. If the prediction is wrong, performance will temporarily degrade until
the pipeline can be restarted. Hopefully, a given branch prediction algorithm improves performance
rather than degrading it by having a worse record than would exist with no prediction at all!

The problem with branch prediction is that it is sometimes wrong, and the microprocessor must
back out of any state changes that have resulted from an incorrectly predicted branch. Speculative
execution can be taken a step farther in an attempt to eliminate the penalty of a wrong branch predic-
tion by executing both possible branch results. To do this, a superscalar architecture is needed that
has enough execution units to speculatively execute extra instructions whose results may not be
used. It is a foregone conclusion that one of the branch results will not be valid. There is substantial
complexity involved in such an approach because of the duplicate hardware that must be managed
and the need to rapidly swap to the correct instruction stream that is already in progress when the re-
sult of a branch is finally known.

A superscalar microprocessor will not always be able to keep each of its execution units busy, be-
cause of dependencies across sequential instructions. In such a case, the next instruction to be
pushed into the execution pipeline must be held until an in-progress instruction completes. Instruc-
tion reordering logic reduces the penalty of such instruction stalls by attempting to execute instruc-
tions outside the order in which they appear in the program. The microprocessor can prefetch a set of
instructions ahead of those currently executing, enabling it to look ahead in the sequence and deter-
mine whether a later instruction can be safely executed without changing the behavior of the instruc-
tion stream. For such reordering to occur, an instruction must not have any dependencies on those
that are being temporarily skipped over. Such dependencies include not only operands but branch
possibilities as well. Reordering can occur in a situation in which the ALUs are busy calculating re-
sults that are to be used by the next instruction in the sequence, and their latencies are preventing the
next instruction from being issued. A load operation that is immediately behind the stalled instruc-
tion can be executed out of order if it does not operate on any registers that are being used by the in-
structions ahead of it. Such reordering boosts throughput by taking advantage of otherwise idle
execution cycles.

All of the aforementioned throughput improvement techniques come at a cost of increased design
complexity and cost. However, it has been widely noted that the cost of a transistor on an IC is asymp-
totically approaching zero as tens of millions of transistors are squeezed onto chips that cost only sev-
eral hundred dollars. Once designed, the cost of implementing deep pipelines, multiple execution
units, and the complex logic that coordinates the actions of both continues to decrease over time.

Advanced Microprocessor Concepts 165

7.6 FLOATING-POINT ARITHMETIC

Conventional arithmetic logic units operate on signed and unsigned integer quantities. Integers suf-
fice for many applications, including loop count variables and memory addresses. However, our
world is inherently analog and is best represented by real numbers as compared to discrete integers.
Floating-point arithmetic enables the representation and manipulation of real numbers of arbitrary
magnitude and precision. Historically, floating-point math was pertinent only to members of the sci-
entific community who regularly perform calculations on large data sets to model many types of nat-
ural phenomena. Almost every area of scientific research has benefited from computational analysis,
including aerodynamics, geology, medicine, and meteorology. More recently, floating-point math
has become more applicable to the mainstream community in such applications as video games that
render realistic three-dimensional scenes in real-time as game characters move around in virtual en-
vironments.

General mathematics represents numbers of arbitrary magnitude and precision using scientific no-
tation, consisting of a signed mantissa multiplied by an integer power of ten. The mantissa is greater
than or equal to one and less than ten. In other words, the decimal point of the mantissa is shifted left
or right until a single digit remains in the 1s column. The number 456.8 would be represented as
4.568 x 107 in scientific notation. All significant digits other than the first one are located to the right
of the decimal point. The number —0.000089 has only two significant digits and is represented as
-8.9 x 107. Scientific notation enables succinct and accurate representation of very large and very
small numbers.

Floating-point arithmetic on a computer uses a format very similar to scientific notation, but bi-
nary is used in place of decimal representation. The Institute of Electrical and Electronics Engineers
(IEEE) has standardized floating-point representation in several formats to express numbers of in-
creasing magnitude and precision. These formats are used by most hardware and software imple-
mentations of floating-point arithmetic for the sake of compatibility and consistency. Figure 7.9
shows the general structure of an IEEE floating point number.

The most significant bit is defined as a sign bit where zero is positive and one is negative. The
sign bit is followed by an n-bit exponent with values from 1 to 27 — 2 (the minimum and maximum
values for the exponent field are not supported for normal numbers). The exponent represents pow-
ers of two and can represent negative exponents by means of an exponent bias. The bias is a fixed,
standardized value that is subtracted from the actual exponent field to yield the true exponent value.
It is generally 2"V — 1. Following the exponent is the binary significand, which is a mantissa or
modified mantissa. Similar to scientific notation, the mantissa is a number greater than or equal to 1
and less than the radix (2, in this case). Therefore, the whole number portion of the binary mantissa
must be 1. Some IEEE floating-point formats hide this known bit and use a modified mantissa to
provide an additional bit of precision in the fractional portion of the mantissa. Table 7.5 lists the ba-
sic parameters of the four commonly used floating-point formats. The IEEE-754 standard defines
several formats including single and double precision. The extended and quadruple precision for-
mats are not explicitly mentioned in the standard, but they are legal derivations from formats that
provide for increased precision and exponent ranges.

It is best to use a single-precision example to see how floating-point representation actually
works. The decimal number 25.25 is first converted to its binary equivalent: 11001.01. The mantissa
and exponent are found by shifting the binary point four places to the left to yield 1.100101 x 2%, Us-

| Sign | Exponent Modified Mantissa

FIGURE 7.9 General IEEE floating-point structure.

